公示!全红婵、盛李豪、黄雨婷等,拟被保送
2997 2025-05-14 14:34
及多样性也更加丰富。
1.1 好氧堆肥过程的细菌群落结构变化
细菌由于具备耐高温、易于利用多种营养物质快速生长等优点,是整个堆肥过程中最主要的降解者。不同堆肥原料的细菌群落结构存在一定的差异,基于细菌高通量测序的研究显示,堆肥过程中主要细菌门类包括了拟杆菌门(Bacteroides)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria),绿弯菌门(Chloroflexi)、浮霉菌门(Planctomycetes)有时候也会占据优势地位。值得注意的是,驱动氮循环中硝化作用的关键微生物主要是变形菌门,驱动反硝化作用的关键微生物包括了变形菌门和厚壁菌门,驱动厌氧氨氧化作用的关键微生物则是浮霉菌门,而放线菌门能够产生木质纤维素水解酶负责纤维素降解等参与碳素转化过程。
随着堆肥过程的推进,细菌群落结构受到温度、深度、氮素转化过程的影响而发生演替。在牛粪与稻草混合堆肥过程中,拟杆菌门(Bacteroides)和变形菌门(Proteobacteria)是最丰富的门,而放线菌门(Actinobacteria)仅在升温阶段占主导,浮霉菌门(Planctomycetes)数量则在降温期大幅提升,这提示了堆肥后期可能发生厌氧氨氧化作用。而在玉米秸秆堆肥的高温阶段,占据优势的放线菌门(Actinobacteria)则在促进纤维素的降解方面发挥了重要作用。针对堆肥不同深度的菌群结构分析仍不多见,现有研究显示,受堆肥深度显著影响的细菌属水平上物种包括了Planifilum、Thermopolyspora、Truepera、Streptomyces、Pseudoxanthomonas等,且细菌群落多样性差异在高温阶段受到了深度和堆肥时间的影响而在降温阶段则是与堆肥深度显著相关。从以上的菌群结构演替过程可知,堆肥体系中特定微生物种群变化是随着堆肥中物质转化和多种环境因子变化等复杂因素的适应性过程。
1.2 好氧堆肥过程的真菌群落结构变化
真菌是堆肥微生物菌群的重要组成部分,堆肥过程中主要真菌门类包括了子囊菌门(Ascomycota)、担子菌(Basidiomycota)。针对鸡粪好氧堆肥的真菌群落结构时空演替研究中,堆肥升温期主要是酵母菌属(Saccharomycetalessp.),堆肥高温期主要是粪壳菌属(Sordarialessp.)、嗜碱枝顶孢菌(Acremonium alcalophilum)、酵母菌属(Saccharomycetales sp.)、Scedosporiumminutisporum,堆肥降温期则是Scedosporiumminutisporum;在堆肥降温期不同深度的真菌群落相对丰度更均匀,且Scedosporium minutisporum是受到堆肥深度显著影响的真菌群落。同时,温度、水分、pH和氧化还原电位等环境条件均是影响真菌群落结构的重要因子,在对猪粪好氧堆肥的研究显示,温度是影响真菌多样性的重要因素,而氧化还原电位、水分、灰分则影响堆肥中优势真菌的丰度。
堆肥中嗜热性真菌的多样性及其纤维素降解活性等方面也受到广泛关注,特别是嗜热性真菌通过分泌各种类型的纤维素分解酶和木质素分解酶来促进有机物的降解,这些具有在高温下保持活性的酶得以帮助嗜热性真菌在堆肥高温期进行代谢活动,曲霉菌属(Aspergillussp.)、毛壳属(Chaetomiumsp.)、腐质霉属(Humicolasp.)、毛霉属(Mucorsp.)、青霉属(Penicilliumsp.)和嗜热属(Thermomycessp.)是堆肥系统的主要活跃真菌种群。
2 好氧堆肥过程的氮素转化
好氧堆肥过程中氮素转化涉及到若干个生化反应,包括了硝化作用、反硝化作用、厌氧氨氧化作用等(图1)。参与硝化作用和反硝化作用的生物学过程是较早被研究的氮素转化过程,厌氧氨氧化作用则是较晚发现的氮素转化过程,相关酶基因如氨单加氧酶(amoA)、亚硝酸盐氧化还原酶(nxrAXB)、硝酸盐还原酶(narG)、亚硝酸盐还原酶(nirK、nirS)、氧化亚氮还原酶(nosZ)、联氨合成酶(hzsABC)和联氨氧化酶(hzo)是评估氮素转化和氮素损失情况的重要分子指标。
2.1 硝化作用
氨氧化作用(Ammoniaoxidation)是硝化过程的限速步骤,由氨单加氧酶(amoA)催化NH4+向羟胺(NH2OH)转化,研究参与氨氧化作用的微生物菌群是解析铵硝转化的首要问题,也是影响堆肥中NH3排放的主要生化反应,且氨氧化过程中间产羟胺的分解是产生N2O的其中一条途径。长期以来,催化氨氧化反应的氨单加氧酶(amoA)被普遍认为是变形菌纲的氨氧化细菌(ammonia-oxidizingbacteria,AOB),研究者发现在海洋、土壤等自然环境中广泛分布着另一类具有氨氧化能力的微生物—氨氧化古菌(ammonia-oxidizingarchaea,AOA),AOA的发现,极大的促进了围绕AOA、AOB在不同生态环境中的发挥氨氧化作用的微生物学研究,进一步有研究者发现海洋中氨氧化古菌具有产生N2O的能力。
利用PCR-DGGE技术研究发现,堆肥中同样存在着大量的AOA,堆体温度、全氮、NO2-和NO3-等堆肥理化指标对AOA群落演替有着显著的影响。Zeng等报道,在堆肥中增加有机物料降低了AOB基因拷贝数,提高了AOA基因拷贝数。堆肥体系中,AOB也受到高温、氧气含量等条件的影响,特别是在高温阶段的活性受到抑制,AOB可能在堆肥腐熟阶段发挥作用,AOA基因丰度则可能在高温和高浓度NH4+条件下占据优势。这些研究结果表明,
在堆肥过程中,AOA、AOB有可能分别在堆肥的不同阶段发挥着氨氧化作用,实现NH4+向NO3+的转化。在对牛粪好氧堆肥中AOA、AOB的微生物群落多样性研究中发现,AOB的系统发育多样性高于AOA,氧气、硝态氮、pH、水分、C/N等环境因子与AOB的多样性有显著的相关性,但与AOA无关。这一研究显示AOB对牛粪堆肥过程中硝化作用更为重要。针对亚硝酸盐氧化还原酶(nxrAXB),是随着氨氧化作用之后负责催化NO2-向NO3-转化的功能酶,在堆肥过程中的研究较少,仅有一些研究结果显示,堆肥中nxrA的基因拷贝数在腐熟阶段呈现上升趋势,且与NO3-的积累有关,这与在土壤中的研究结果相一致。
声明:本文所用图片、文字来源《农业科学》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
相关链接:固体,硫化氢,甲硫醇